Passive Imaging
Using SAR and ISAR Technology

Dr. Piotr Samczyński,
e-mail: P.Samczynski@elka.pw.edu.pl

Prof. Mateusz Malanowski
e-mail: M.Malanowski@elka.pw.edu.pl

Warsaw University
of Technology

Faculty of Electronics
and Information
Technology

Institute of Electronic Systems
Research Group on Radar Techniques
WUT is the largest of 18 Polish technical universities

Public state school
Research Group on Radar Techniques

- Radar signal processing
- Signal sampling (ADCs)
- Telecommunication signal processing
- DSP platforms
- Simulation and modeling
- Target tracking
- Image processing
Tutorial Agenda

- Short intro to SAR/ISAR imaging (a monostatic case)
- Introduction to passive bistatic radar imaging
- Passive SAR imaging using non-cooperative satellite-based illumination
- Passive SAR imaging using commercial ground based illuminators
- Passive ISAR imaging
- Summary
SAR – Synthetic Aperture Radar

Radar mounted on the moving platform (UAV, aircraft, missile, satellite, etc.)
Optical Image
Optical Image
Optical Image
SAR Image

Azimuth + Range compression = 2D SAR image
SAR - How Does It Work?

Azimuth + Range compression = 2D SAR image
Range compression

Slant range resolution:

\[r_s = \frac{c}{2\beta} \]

Relief displacement in slant-range representation:

\[r_s \approx h \cdot \sin \theta \]

Relief displacement in slant-range representation:

\[r_g \approx h \cdot \tan \theta \]

Ground range resolution:

\[r_g = \frac{c}{2\beta \cdot \cos \theta} \]

\[\beta = 1 \text{GHz} \]

\[\theta = 30^\circ \]

\[r_g \approx 17.5 \text{cm} \]
SAR - How Does It Work?

Cross-range compression

Received signal phase:

\[\varphi(t) = \varphi_o - 2 \cdot \frac{2 \pi \cdot r(t)}{\lambda} \]

Distance to target:

\[r(t) = \sqrt{R^2 + (v \cdot t)^2} \]

Taylor extension:

\[r(t) = R + \frac{(v \cdot t)^2}{2R} + \ldots \]

Received phase:

\[\varphi(t) = \varphi_o - \frac{4\pi}{\lambda} \left[R + \frac{(v \cdot t)^2}{2R} + \ldots \right] \]

Received frequency:

\[f(t) = \frac{1}{2\pi} \frac{d\varphi(t)}{dt} \approx -\frac{2v^2}{\lambda R} \]

LFM signal

Present and Future Perspectives of Passive Radar, 13 Oc
Received frequency:

\[f(t) = \frac{1}{2\pi} \frac{d\varphi(t)}{dt} \approx -\frac{2v^2}{\lambda R} t \]

LFM signal
SAR Processing
– Limitations and Practical Difficulties:

Ideal case

\[\phi(t) = \phi_0 - \frac{4\pi}{\lambda} \left[R + \frac{(v \cdot t)^2}{2R} \right] \]
SAR Processing
– Limitations and Practical Difficulties:

\[\phi(t) = \varphi_0 - \frac{4\pi}{\lambda} \left[R + v \cdot t + \frac{(v \cdot t)^2}{2R} + \ldots \right] = \varphi_0 - \left[\xi + \chi t + \eta^2 + \ldots \right] \]
SAR Processing
– Limitations and Practical Difficulties:

Fully focus image

\[\phi(t) = \varphi_o - [\xi + \chi t + \eta^2 + ...] \]

\[\gamma_2 = \gamma_1 \]

Blurred image (velocity error)

\[\gamma_2 \neq \gamma_1 \]

Autofocus techniques are required!

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany
SAR Processing – Limitations and Practical Difficulties:

Autofocus techniques – an overview

Non-parametric:
- Prominent Point Processing (PPP),
- Phase Gradient (PG),

Parametric:
- Non-coherent:
 - Contrast Optimization (CO)
 - MapDrift (MD)
- Coherent:
 - Phase Difference (PD)
 - Shift And Correlate (SAC)
 - Coherent MapDrift (CMD)

\[
\varphi(t) = \varphi_o - \frac{4\pi}{\lambda} \left[R + v_r \cdot t + \frac{(v \cdot t)^2}{2R} + \ldots \right]
\]

\[
\varphi(t) = \varphi_o - \left[\xi + \chi t + \eta^2 + \ldots \right]
\]
SAR Processing – Limitations and Practical Difficulties:

CO Autofocus Technique

\[C = \frac{E[(I(x, y)^2 - E[I(x, y)^2])^2]}{E[I(x, y)^2]} \]
SAR Processing – Limitations and Practical Difficulties:

CO Autofocus Technique

Example:

On courtesy of Professor Marco Martorella - University of Pisa

The higher the Image Contrast the better the image focus
MD Autofocus Technique

MD cross-correlation function:

\[r(\tau) = \int_{t=-\infty}^{\infty} |I_1(t)| \cdot |I_2(t-\tau)| dt \]

Estimated velocity is determined as:

\[\tilde{v}_{k+1} = \Delta \tilde{v}_k + \tilde{v}_k \]

where:

\[\Delta \tilde{v}_k = \frac{\tilde{v}_k^2}{\theta \cdot R \cdot f_{PRF}} \cdot \Delta x \]

Estimated acceleration:

\[\tilde{a} = \frac{\Delta \tilde{v}}{\Delta t} = \frac{(\tilde{v}_{1,2} - \tilde{v}_{2,3})}{N} \cdot f_{REP} \]

SAR Processing – Limitations and Practical Difficulties:

CMD Autofocus Technique

CMD cross-correlation function:

\[r_C(\tau) = \int_{t=-\infty}^{\infty} I_1(t) \cdot I_2^*(t - \tau) e^{-j \Delta f \cdot t} dt \]

where:

\[\Delta f = 2k\beta T_{ob} / \pi \]

Estimated velocity (**):

\[\hat{v}_2 = \sqrt{\frac{R \cdot \theta \cdot v_1}{2 \left(\Delta x + \frac{R \cdot \theta}{f_{PRF}} \right) \frac{1}{v_1}}} \]

Short intro to SAR/ISAR imaging (a monostatic case)
ISAR – Inverse SAR
ISAR – Inverse SAR

\[V_r = V \sin(\theta) = \omega R \sin(\theta) \]

Doppler frequency

\[f_d = \frac{2V_r}{\lambda} = \frac{2\omega R \sin(\theta)}{\lambda} \]

Frequency resolution

\[\Delta f_d = \frac{1}{T} \]
ISAR – Inverse SAR

Simple ISAR Processing

- **range (fast time)**
- **azimuth (slow time)**
- **Doppler frequency**

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany
Introduction to passive bistatic radar imaging
Introduction to passive radar imaging

Passive radars:
• ground based PCL system for air surveillance
• technology entering to the maturity stage

New trends in passive radars:
• airborne passive radar applications
• **SAR/ISAR mapping**
 – both for ground based and moving systems
Illuminators of Opportunity

- Analogue TV (long range, poor signal characteristics)
- FM radio (long range, relatively low resolution, content-dependent)
- **DVB-T** (medium range, good range resolution, signal conditioning)
- DAB (medium range, good range resolution, not widespread)
- GSM (short range, relatively low resolution)
- **DVB-S** (very short range, very good range resolution)
- Others (WiFi, WiMAX, GNSS)

- Other radars (ATC, EW, SAR, ...)

![Graph showing detection range and range resolution for different systems]
Passive SAR Imaging

- Passive SAR Imaging using non-cooperative satellite-based illumination
- Passive SAR Imaging using commercial ground based illuminators
System Geometry

For such geometry the **SAR image** can be obtained using **FFT in cross-range!**

For the observation time T, the FFT resolution equals:

$$\Delta f_d = \frac{1}{T} = \frac{v \cdot \delta_a}{\lambda \cdot R_o}$$

This gives cross-range resolution:

$$\delta_a = \frac{\lambda \cdot R_o}{v \cdot T}$$

This gives maximum cross-range resolution equals L, Where L is antenna length.

$$\delta_a = L_a$$

In active SAR radars cross-range resolution equals $L/2$.

(*) P. Samczynski, K. Kulpa, "Passive SAR imaging using a satellite pulsed radar as an illuminator of opportunity", in Proc. of IRS 2012, May 23-25, 2012, Warsaw, Poland, pp. 157-161
Processing

- Unknown parameters of Tx (PRF, chirp rate, etc.)
- Signal synchronization
- Unknown Tx trajectory

Geometry corrections is required
Passive SAR Imaging Results

2011 July 03

The ASAR Tx (EnviSAT-1) of opportunity
WUT C-band Rx, Biebrza, POLAND

Dual channel backward geometry

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany
Passive SAR Imaging Results

The ASAR Tx (EnviSAT-1) of opportunity RMA C-band Rx, Brussels, BELGIUM

2012 April 07

Single channel forward geometry
Passive SAR Imaging Results

2012 April 07

The ASAR Tx (EnviSAT-1) of opportunity
RMA C-band Rx, Brussels, BELGIUM

Single channel forward geometry

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany
2012 April 08 - Envisat services interrupted: the satellite was unexpectedly lost
Passive SAR Imaging Results

2012 July 19

The TerraSAR-X Tx of opportunity
WUT X-band Rx, Biebrza, POLAND

Dual channel backward geometry

Passive SAR Imaging Results

2012 July 19

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany
Challenges:

- include satellite geometry in processing
- polarimetry processing
- GMTI processing
- multistatic passive SAR Imaging using various Tx of opportunity and different scenarios

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany
Passive SAR Imaging

- Passive SAR Imaging using non-cooperative satellite-based illumination
- **Passive SAR Imaging using commercial ground based illuminators**

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany
System Geometry

Illuminator: Ground-based DVB-T transmitter
System Geometry

Tx to Rx distance can be approximated (using Taylor series) by:

\[l_{\text{TxRx}}(t) \approx L_{\text{TxRx}} + \frac{(vt)^2}{2L_{\text{TxRx}}} + \frac{vt}{2L_{\text{TxRx}}} \]

Rx to target distance:

\[l_{\text{ORx}}(t) \approx L_{\text{ORx}} + \frac{(vt)^2}{2L_{\text{ORx}}} + \frac{vt}{2L_{\text{ORx}}} \]

Signal phase in reference channel:

\[\varphi_{\text{Ref}}(t) = \frac{2\pi \cdot l_{\text{TxRx}}(t)}{\lambda} \]

Signal phase in reference channel:

\[\varphi_{\text{Surv}}(t) = \frac{2\pi \cdot (L_{\text{TxO}} + l_{\text{ORx}}(t))}{\lambda} \]

Range compression:

\[s_{\text{xcorr}}(\tau) = \int s_{\text{Ref}}(t) \cdot s_{\text{Echo}}^*(t + \tau)dt \]
System Geometry

Ground objects are imaged at the distance:

\[R_{Obj}(t) = L_{TxO} + l_{ORx}(t) - l_{TxRx}(t) \]

Target Phase:

\[\varphi_{Obj}(t) = \frac{2\pi R_{Obj}(t)}{\lambda} = \varphi_{Surv}(t) - \varphi_{Re_f}(t) = \]

\[= \frac{2\pi(L_{TxO} + l_{ORx}(t) - l_{TxRx}(t))}{\lambda} \]

Distance to target:

\[R_{Obj}(t) = \frac{1}{2}(\frac{1}{L_{ORx}} - \frac{1}{L_{TxRx}})(vt)^2 + \]

\[+ \frac{1}{2}(\frac{1}{L_{ORx}} - \frac{1}{L_{TxRx}})vt + \]

\[+ (L_{TxO} + L_{ORx} - L_{TxRx}) \]

The Doppler frequency:

\[f_{Dop}(t) = \frac{2\pi}{\lambda} \left(\frac{1}{L_{ORx}} - \frac{1}{L_{TxRx}} \right) 2v^2 t + \]

\[+ \frac{\pi}{\lambda} \left(\frac{1}{L_{ORx}} - \frac{1}{L_{TxRx}} \right) v \]

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany
Verifications via Experiments

Trial No 1
Verifications via Experiments

40 seconds of integration time
Verifications via Experiments
Verifications via Experiments
Passive ISAR imaging
ISAR - How does it work?

Geometry No. 1

\[V_r = V \sin(\theta) = \omega R \sin(\theta) \]

Doppler frequency

\[f_d = \frac{2V_r}{\lambda} = \frac{2\omega R \sin(\theta)}{\lambda} \]

Frequency resolution

\[\Delta f_d = \frac{1}{T} \]
Passive ISAR results
Geometry No. 1

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany
ISAR - How does it work?

Geometry No. 2

Received signal phase:

\[\varphi(t) = \varphi_o - 2 \cdot \frac{2\pi \cdot r(t)}{\lambda} \]

Distance to target:

\[r(t) = \sqrt{R^2 + (v \cdot t)^2} \]

Taylor extension:

\[r(t) = R + \frac{(v \cdot t)^2}{2R} + \ldots \]

Received phase:

\[\varphi(t) = \varphi_o - \frac{4\pi}{\lambda} \left[R + \frac{(v \cdot t)^2}{2R} + \ldots \right] \]

Received frequency:

\[f(t) = \frac{1}{2\pi} \frac{d\varphi(t)}{dt} \approx - \frac{2v^2}{\lambda R} t \]

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany
Pionner work in passive ISAR imaging:

Next step – use an autofocus techniques in passive ISAR imaging
Passive ISAR - System geometry

Geometry No. 2

\[y(r, v) = \int_{0}^{t_{\text{int}}} X_M(t) \cdot X_R^\ast \left(t - \frac{r(t)}{c} \right) \cdot e^{2\pi f_c \frac{v}{c} t} \ dt \]
Processing Stages

- Signal acquisition using Commercial-Off-The-Shelf devices
- Separation of signals from different transmitters
- Clutter cancellation
- Crossambiguity calculation
- CFAR detection
- Bistatic tracking
- Target localization in Cartesian coordinates and target trajectory estimation
- ISAR processing

Verifications via Simulations

Simulated targets

MIG-29

A-380
Verifications via Simulations
Simulated targets

ISAR image

MIG-29
(B=400MHz)

A-380
(B=400MHz)
Verifications via Simulations

Simulated targets

MIG-29
DVB-T illuminator (B=7.8MHz)

A-380
DVB-T illuminator (B=7.8MHz)
Passive ISAR – Measured Results

Passive ISAR image of MIG-29 (real data)

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany
Autofocusing in Passive ISAR imaging
Parametric autofocus

\[C(\omega, R_{crv}, \delta) = \max_t |I(t, \omega, R_{crv}, \delta)| \]

\[I(t, \omega, R_{crv}, \delta) = s_{surv}(t) * h(t, \omega, R_{crv}, \delta) \]

\[s_{surv}(t) = A s_T(t - \left(\frac{r_R(t) + r_T(t)}{c} \right)) \exp \left\{ j \frac{2\pi}{\lambda} (r_R(t) + r_T(t)) \right\} \]

\[h(t) = s_{surv}^*(-t) \]
Simulations & verifications

Simulated parameter
- Radius of curvature: $R_{crv} = 3000 \, m$
- Target radial speed: $\omega = 0.02 \frac{rad}{s}$
- Center angle: $\delta_0 = -\pi/2$

estimated initial parameters from Kalman Tracker

- $\omega_i = 0.026 \, rad/s$
- $R_{crv_i} = 2294 \, m$
- $\delta_i = -1.5681 \, rad$.

Present and Future Perspectives of Passive Radar, 13 October 2017, Nuremberg, Germany
Results

Real parameters:
Radius of curvature: $R_{crv} = 3000 \text{ m}$
Target radial speed: $\omega = 0.02 \text{ rad/s}$
Center angle: $\delta_0 = -\frac{\pi}{2} \approx 1.5708$

Estimated initial parameters
$R_{crv,i} = 2294 \text{ m}$
$\omega_i = 0.026 \text{ rad/s}$,
$\delta_i = -1.5681 \text{ rad}$

$max_t | I(t, \omega, R_{crv}, \delta) |$
Next steps: use MapDrift Autofocus

\[f_d(t) \approx \frac{1}{\lambda} \left\{ v \left[\cos(\delta) + \cos(\alpha) \right] + v^2 t \left[\frac{\sin^2(\alpha)}{R_R} + \frac{\sin^2(\delta)}{R_T} \right] + \frac{3v^3 t^2}{2} \cos(\alpha) \left[\frac{\sin^2(\alpha)}{R_R^2} + \frac{\sin^2(\delta)}{R_T^2} \right] \right\} \]
Next steps: use MapDrift Autofocus

ISAR image – unfocus image
Next steps: use MapDrift Autofocus

Autofocusing and velocity estimation

\[f_d(t) \approx \frac{1}{\lambda} \left\{ v [\cos(\delta) + \cos(\alpha)] + v^2 t \left[\frac{\sin^2(\alpha)}{R_R} + \frac{\sin^2(\delta)}{R_T} \right] + \frac{3v^3 t^2}{2} \cos(\alpha) \left[\frac{\sin^2(\alpha)}{R_R^2} + \frac{\sin^2(\delta)}{R_T^2} \right] \right\} \]
Next steps: use MapDrift Autofocus

ISAR image – after autofocus
Summary

- Passive SAR/ISAR – still a lot of challenging have to be solved
 An autofocus is one of such a challenge...
- Successful verification of the passive SAR/ISAR imaging
- Potential possibility of ground, sea and air target classification
- Enhance functionality - cooperation of active and passive sensors
- Further research is required
- Multiple receivers for passive SAR/ISAR imaging purposes...
 and narrowband passive SAR/ISAR imaging
Thank you for your attention!!